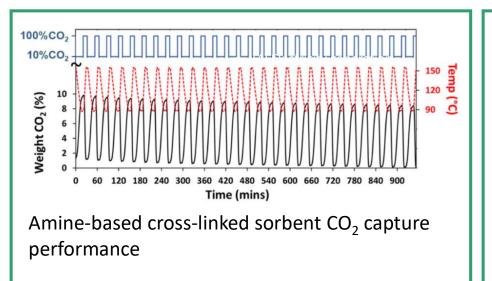
The Strategic University Steel Technology and Innovation Network

Task 1: Carbon conversion

Prof Andrew Barron,¹ Prof Peter Styring,² Dr Enrico Andreoli¹ ¹ Swansea University, ² The University of Sheffield

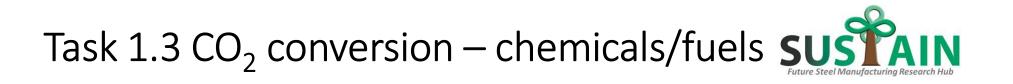


Aim

- State-of-art solid sorbent materials for CO₂ capture from steel-making emissions & process gas mixtures
- Focus on selectivity, robustness, and cost to address scalability of separation of complex gas mixtures

Approach

- Amine-based cross-linked porous sorbent materials
- Ionic liquids supported on cellulose
- Temperature & pressure swing sorption unit optimisation (TSA, PSA)


Output

- Carbon capture materials tailored for steel-making with lower energy demand and increased separation efficiency
- Scalability of sorbent production: cheap starting materials, green solvents, optimised separation process.

Task 1.2 CO₂ conversion - biorefinery

Aim Approach Increases compound yields of biorefinery LED Photobioreactors: enhance growth ٠ using CO₂ emissions from steelmaking rate of algae (1.8 kg CO₂ kg⁻¹ of algal biomass) Rapid harvesting of algae, reducing large • volumes, and fractionate high from low Membranes technologies: a cascade of value products membrane process with increasing product recovery capacity Output **Animal Feed Protein** LED technology increases compound yields by 30% Protein - £300/kg Omega-3 lipids - £100/kg Haematococcus – Xanthophyll - £2500/kg

Aim

- Advanced electrocatalysts and system for CO₂ conversion to hydrocarbons and alcohols
- Enhancement of CO₂ conversion reactor for the production of fuels

Approach

- Gas diffusion electrodes for production of formate, methanol, ethanol, ethylene, etc. from CO₂
- Thermochemical reactor for CO₂ conversion to diesel, Jet fuel, methanol, DME

Electrochemical conversion of CO₂ to added value products

Output

- Enhance electrochemical rate of production (>100 mA/cm²) and product selectivity (>60% for C1 products)
- Repurposed thermal reactor scaled from Batch to Flow, with potential (based on successful additional funding) to 0.25t/day of product